Investigation of Binding Modes and Functional Surface of Scorpion Toxins ANEP to Sodium Channels 1.7

نویسندگان

  • Yongbo Song
  • Zeyu Liu
  • Qi Zhang
  • Chunming Li
  • Wei Jin
  • Lili Liu
  • Jianye Zhang
  • Jinghai Zhang
چکیده

The depressant β toxin anti-neuroexcitation peptide (ANEP) from the Chinese scorpion Buthus martensii Karsch has analgesic activity by interacting with receptor site 4 of the voltage-gated sodium channels (VGSCs). Here, with molecular dynamics simulations, we examined the binding modes between ANEP and the site 4 of mice sodium channel 1.7 (mNav1.7), a subtype of VGSCs related to peripheral pain. Homology modeling, molecular mechanics, and molecular dynamics in the biomembrane environment were adopted. The results suggested that ANEP bound to the resting site 4 mainly by amino acid residues in the β2-β3 loop and the 'NC' domains, and the activate site 4 mainly by amino acid residues in the hydrophobic domain of N-groove and residues in the 'pharmacophore'. Effects analysis of 14 mutants in the predicted functional domains of ANEP on mouse twisting models showed that the analgesic activity of mutants L15 and E24 of the 'pharmacophore', W36, T37, W38, and T39 forming the loop between the β2- and β3-strands and N8, V12, C60, and K64 in the NC domain increased distinctly after these residues were substituted for Ala, respectively. The binding modes and the active sites predicted were consistent with available mutagenesis data, and which is meaningful to understand the related mechanisms of ANEP for Nav1.7.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Binding modes and functional surface of anti-mammalian scorpion α-toxins to sodium channels.

Scorpion α-toxins bind to the voltage-sensing domains of voltage-gated sodium (Na(V)) channels and interfere with the inactivation mechanisms. The functional surface of α-toxins has been shown to contain an NC-domain consisting of the five-residue turn (positions 8-12) and the C-terminus (positions 56-64) and a core-domain centered on the residue 18. The NC- and core-domains are interconnected ...

متن کامل

Expression, Purification and Docking Studies on IMe-AGAP, the First Antitumor-analgesic Like Peptide from Iranian Scorpion Mesobuthus eupeus

Scorpion venom contains different toxins with multiple biological functions. IMe-AGAP is the first Analgesic-Antitumor like Peptide (AGAP) isolated from Iranian scorpion Mesobuthus eupeus. This peptide is similar to AGAP toxin with high analgesic activity, extracted from Chinese scorpion and inhibits NaV1.8 and NaV1.9 voltage-gated sodium channels involved in the ...

متن کامل

Expression, Purification and Docking Studies on IMe-AGAP, the First Antitumor-analgesic Like Peptide from Iranian Scorpion Mesobuthus eupeus

Scorpion venom contains different toxins with multiple biological functions. IMe-AGAP is the first Analgesic-Antitumor like Peptide (AGAP) isolated from Iranian scorpion Mesobuthus eupeus. This peptide is similar to AGAP toxin with high analgesic activity, extracted from Chinese scorpion and inhibits NaV1.8 and NaV1.9 voltage-gated sodium channels involved in the ...

متن کامل

Voltage-Gated Sodium Channels Modulation by Bothutous Schach Scorpion Venom

Buthotus schach is one of the dangers scorpion in Iran that belong to the Buthidae family. Toxins are existing in venom scorpion, modulate the ion channels by blocking or opening the pore of the channel or by altering the voltage gating and useful as pharmacological tools. In the present study, we investigated the effect of venom and its obtained fractions by gel filtrations on electrophysiolog...

متن کامل

Conserved functional surface of antimammalian scorpion β-toxins.

Scorpion β-toxins bind to the voltage-sensing domain of voltage-gated sodium (NaV) channels and trap the voltage-sensing domain in the activated state. Two structurally similar β-toxins from scorpions, Css4 and Cn2, selectively target different subtypes of mammalian NaV channels. While the receptor site on the channels is known, the functional surface of the toxins remains to be understood. Her...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2017